نمونه‌ی آن‌ها شکل‌گیری فاز فریت کبالت در دمای 800 درجهی سانتیگرادکامل شد و خوشه‌های فریت کبالت به سمت نانو بلوری شدن پیش رفتند، زمانی که برهم‌کنش بین خوشه‌های فریت کبالت با ماتریس سیلیکا شکسته شد پیوندهای Si-O-Fe ناپدید شدند. بر طبق گزارش آن‌ها اشباع مغناطیسی نانوکامپوزیت‌ها با افزایش غلظت بیشتر فریت در ماتریس افزایش یافت تا مقدار بیشینه emu/g 98/66 برای نمونه با نسبت مولی 1:1 (wt% 80 فریت کبالت) به‌دست آمد [52].
سیلوا و همکارانش57 در سال 2007 کامپوزیت ذرات فریت کبالت پخش شده در ماتریس سیلیکا را به روش سل-ژل تهیه کردند. آن‌ها از TEOS به عنوان پیشماده سیلیکا و از نیترات به عنوان پیش‌ماده فریت استفاده کردند. پس از گذشت زمان پیرسازی، نمونه برای 12 ساعت در 110 درجهی سانتیگراد خشک شدند و ذرات فریت کبالت در ماتریس سیلیکا شکل گرفتند. پس از آن عملیات حرارتی برای 2 ساعت در دماهای 300، 500، 700 و 900 درجهی سانتیگراد انجام شد که باعث افزایش در اندازهی ذرات شد. رسوب ذرات خوشه‌ای فریت در دیواره‌های منافذ زیروژل با افزایش دما بیشتر شد و در دماهای بالاتر از 700 درجهی سانتیگراد بلورهای بزرگ‌تر کبالت داخل منافذ ماتریس شکل گرفتند و افزایش در مغناطش اشباع و پسماند مغناطیسی را باعث شدند [53].
در همان سال فرناندز و همکارانش58 نانو کامپوزیت سیلیکا آئروژل/ آهن اکسید را با فرآیند سل-ژل و تبخیر فوق بحرانی حلال سنتز کردند. آن‌ها نمونه‌ها با پیشماده‌های TEOS و TMOS را با تبخیر فوق بحرانی اتانول و متانول خشک کردند. ذرات مغناطیسی با اندازهی متوسط nm 6 با TEOS و متانول سنتز شدند در حالی که فری‌هیدرات‌ها از TMOS و اتانول به‌دست آمدند. بعضی نمونه‌های آن‌ها رفتار ابر پارامغناطیس از خود نشان دادند [54].
دو سال بعد ژنفا زی و همکارانش59 نانوذرات فریت کبالت را به روش هم‌نهشت شیمیایی و خشک شدن در هوا در دمای80 درجهی سانتیگراد تهیه کردند. اندازهی قطر نانوذرات سنتز شده nm 20 تا nm 30 بود و دمای کوری در فرآیند افزایش دما کمتر از فرآیند کاهش دما بود. مقدار اشباع مغناطیسی این ذرات emu/g 77/61 بهدست آمد که نسبت که مقدار کپه آن کوچک‌تر بود. در این پژوهش مقدار پایین نیروی وادارندگی به دو دلیل اتفاق می‌افتد: ذرات فریت ممکن است ساختار چند دامنه داشته باشند. شکل‌گیری چند دامنه‌ها و حرکت دیوارهای دامنه می‌تواند کاهش دامنه را نتیجه دهد. همچنین اگر اندازهی بحرانی ذرات [55] بهدست آمده بزرگ‌تر از قطر میانگین ذرات باشد، رفتار تک دامنه را از خود نشان می‌دهند. آن‌ها گزارش کردند که کاهش وادارندگی نمونه‌ها به رفتار وابسته به اندازهی ذرات بستگی دارد [56].
بلازینسکی و همکارانش60 در پژوهشی که در سال 2013 انجام دادند، سیلیکا آئروژل را با روش سل-ژل و فرآیند فوق بحرانی تهیه کردند. آن‌ها دریافتند که روش خشک کردن فوق بحرانی مؤثرترین روش برای بهدست آوردن بهترین ویژگی این محصولات است. بدین منظور آن‌ها دستگاه خشک کن فوق بحرانی را برای خود ساختند که فشار و دما به طور دستی تنظیم می‌شد و مرحله مهم در آمادهسازی سیلیکا آئروژل‌ها بود. به این ترتیب آن‌ها سیلیکا آئروژل‌های شفاف با مساحت سطح ویژه بالا به‌دست آوردند [57].
در گزارشی دیگر در سال 2014 ساجیا و همکارانش61 پودر آمورف فریت کبالت را به روش سل-ژل تهیه کردند و این روش را بهترین روش تهیه نانوذرات عنوان کردند. آن‌ها دریافتند که عملیات حرارتی برای تجزیه کامل مقدار مواد آلی و نیترات حاضر در پودر آمورف لازم است. در این فرآیند برای جلوگیری از ته‌نشینی یا رسوبگذاری این واکنش اسید سیتریک به آن اضافه کردند و سپس مراحل خشک کردن و عملیات حرارتی انجام شد. پارامترهای عملیات حرارتی، مرحله نهایی در آماده‌سازی نانوذرات فریت کبالت بودند که بررسی شدند. ساختار اسپینل در همهی نمونه‌های آن‌ها شکل گرفته بود و هنگامی که ذرات شروع به رشد کردند ناخالصی‌ها حذف شد. ویژگی مغناطیسی مرتبط با رفتار فریمغناطیس این نمونه‌ها مقدار emu/g 62 برای اشباع مغناطیسی را نشان می‌دهد [58].
در جدیدترین پژوهشی که دربارهی آمادهسازی و ارزیابی نانوکامپوزیت سیلیکا آئروژل/فریت در سال 2014 صورت گرفته است، کاتاگر و همکارانش62 نانوذرات فریت را به روش ته‌نشینی آماده کردند و سپس TMOS را به آن اضافه نمودند. برای این کار آن‌ها O2H6. 2NiCl، O2H6. 3FeCl و 2ZnCl را با اضافه کردن آب مقطر حل کردند. PH محلول در رفلاکس 110 درجهی سانتیگراد به مدت 24 ساعت 13 تنظیم شده بود. با حذف NaOH که برای PH اضافه شده بود، و شستن مکرر با آب مقطر و اتانول نانوذرات نتیجه شدند. بعد از بهدست آمدن نانوذرات به طور مستقیم به TMOS اضافه شدند و 3NH و آب دیونیزه به عنوان کاتالیست برای تهیه سل همگن اضافه گردیدند. برای مرحله پیر سازی قالب‌های حاوی سل را در اتانول به مدت 2 ساعت و دمای 50 درجهی سانتیگراد پیرسازی کردند و در نهایت ژل خیس را با خشک کردن فوق بحرانی کربن دی اکسید بهدست آوردند. تحقیقات آن‌ها نشان داد که زمان ژل شدن با افزایش نسبت مولی اتانول/TMOS افزایش یافت. همچنین به دلیل کشش سطحی اتانول، نمونه‌ها منقبض می‌شوند یا ترک می‌خورند. نانوکامپوزیت به‌دست آمده ساختار اسکلت شبکه‌ی سه بعدی را حفظ کرد. مساحت سطح ویژه با افزایش مقدار فریت از /g2m 700 تا /g2m 300 تغییر کرد. به علاوه ویژگی مغناطیسی فریت در ساختار نانو کامپوزیت تغییر نکرد [59].
3-5 برخی از کاربردهای آئروژل
3-5-1 آئروژل‌ها به عنوان کامپوزیت
همانطور که پیشمادهی الکوکسید سیلیکون برای شکل‌گیری شبکه‌ی ژل با اکسیدهای فلزی دیگر به اندازه‌ی کافی واکنشی است، مطالعات زیادی در زمینه سنتز سیلیکا آئروژل برای کاربردهای مختلف صورت گرفته است [1].
3-5-2 آئروژل‌ها به عنوان جاذب
آئروژل‌های فوق آبگریز و انعطافپذیر برای در جذب حلال‌های معدنی و روغن‌ها سنتز شدند. ونکاتشوارا رائو و همکارانش63 چگالی جذب و واجذب سیلیکا آئروژل‌های فوق آبگریز را با استفاده از یازده حلال و سه روغن بررسی کردند [60].
3-5-3 آئروژل‌ها به عنوان حسگر
آئروژل‌ها تخلخل بالا، حفره‌های در دسترس، و سطح در معرض بالا دارند. از این رو کاندیداهای خوبی برای استفاده به عنوان حسگر هستند.بر اساس مطالعه وانگ و همکارانش64 روی آئروژل لایه‌ی نازک نانوذرات سیلیکا آئروژل نشان داد که مقاومت الکتریکی به طور قابل ملاحظه‌ای با افزایش رطوبت کاهش یافت. زیروژل همان مواد حساسیت کم‌تری را نشان داد. آئروژل‌هایی که اصلاح سطح شدند در مقایسه با آئروژل‌های آب‌گریز کمتر تحت تأثیر رطوبت قرار گرفتند و می‌توانند به عنوان ضد زنگ و عوامل آب‌گریز مورد استفاده قرار بگیرند [61].
چن و همکارش65 آئروژل‌هایی را برای کاربرد حسگرهای زیستی مطالعه کردند. در مطالعه آن‌ها، آئروژل‌های مزوحفره به وسیله پلیمریزاسیون سل-ژل با یک مایع یونی به عنوان حلال تهیه کردند. نتایج نشان می‌دهدکه آئروژل آماده شده می‌تواند به عنوان یک بسترشناسایی برای اسید نوکلوئیدها به کار رود [62].
3-5-4 آئروژل به عنوان مواد با ثابت دی الکتریک پایین
لایه نازک‌های آئروژل 2SiO توجه خاصی را به خود اختصاص داد، به دلیل ثابت دی الکتریک خیلی پایین، تخلخل و پایداری حرارتی بالا. پارک و همکارانش66 لایه نازک سیلیکا آئروژل را برای لایهی داخلی دی الکتریک مورد بررسی قرار دادند و ثابت دی الکتریک را تقریبا 9/1 اندازه‌گیری کردند. آن‌ها ثابت دی الکتریک بسیار پایین فیلم‌های آئروژل را برای لایهی داخلی مواد دی الکتریک تولید کردند. فیلم های سیلیکا آئروژل به ضخامت ? 9500، % 5/79 تخلخل، و ثابت دی الکتریک پایین 2 با روش فرآیند خشک کردن محیط با استفاده از n-هپتان به عنوان حلال خشک کن به‌دست آوردند [63].
3-5-5 آئروژل به عنوان کاتالیزور
مساحت سطح ویژه‌ی بالای آئروژل‌ها منجر به کاربردهای زیادی می‌شود، از جمله جاذب شیمیایی برای پاکسازی نشتی. این ویژگی کاربرد زیادی را به عنوان کاتالیزور یا حامل کاتالیزور به همراه دارد. آئروژل‌ها در کاتالیست‌های همگن مناسب هستند، زمانی که واکنش‌دهنده‌ها هم در فاز مایع و هم در فاز گاز هستند [27].
3-5-6 آئروژل به عنوان ذخیره سازی
تخلخل بالا و مساحت سطح زیاد سیلیکا آئروژل‌ها می‌تواند برای کاربردهایی مثل فیلترهای گازی، جذب رسانهای برای کنترل اتلاف، محصور سازی، ذخیره سوخت هیدروژن به کار رود. آئروژل‌ها می‌توانند در مقابل تنش گذار مایع/گاز مقاومت کنند زیرا بافت آنها در طول پخت تقویت شد به عنوان مثال در ذخیره سازی، انتقال مایعات چون سوخت موشک‌ها کار برد دارد. به علاوه وزن پایین آئروژل‌ها بزرگ‌ترین مزیت است که در سیستم حمل دارو به دلیل ویژگی زیست سازگار آن‌ها مورد استفاده است [64]. کربن آئروژل‌ها در ساخت الکتروشیمی ابر خازن دو لایه کوچک استفاده شد. ابر خازن‌های آئروژل مقاومت ظاهری پایینی در مقایسه با ابر خازن‌های معمولی دارد و می‌تواند جریان بالا را تولید یا جذب کند.
3-5-7 آئروژل‌ها به عنوان قالب
فیلم‌های سیلیکا آئروژل برای سلول‌های خورشیدی رنگ حساس استفاده شدند. مساحت سطح ویژه‌ی فیلم‌های آئروژل روی فیلم‌های شیشه‌ای رسانا تهیه شدند. نشست لایه اتمی برای پوشش قالب آئروژل با ضخامت‌های مختلف 2TiO با دقت کمتر از نانومتر انجام شد. غشاء آئروژل پوشش داده شده با 2TiO در سلول خورشیدی رنگ حساس گنجانیده شد. طول نفوذ شارژ با افزایش ضخامت 2TiO افزایش یافت که منجر به افزایش جریان شد [65].
3-5-8 آئروژل به عنوان عایق گرما
جدای از تخلخل بالا و چگالی پایین یکی از جذاب‌ترین ویژگی‌های آئروژل رسانندگی گرمایی پایین آن‌ها است، علاوه بر این، از یک شبکه‌ی سه بعدی با ذرات ریز متصل شده تشکیل شده‌اند. بنابراین انتقال گرما از میان بخش جامد آئروژل‌ها از طریق مسیر پر پیچ و خمی است. فضای اشغال نشده در یک جامد توسط آئروژل به طور معمول با هوا پر شده مگر آن که تحت خلاء مهروموم شده باشد. این گازها می‌توانند انرژی حرارتی را از طریق آئروژل انتقال دهند. حفره‌های آئروژل باز هستند و اجازه عبور گاز از میان مواد را می‌دهند [27].
3-5-9 آئروژل‌ها در کاربرد فضایی
ناسا از آئروژل‌ها برای به دام انداختن ذرات گرد و غبار روی فضاپیما استفاده کرد. ذرات در برخورد با جامد اسیر شده، گازها تبخیر می‌شوند و ذرات در آئروژل به دام می‌افتند [27].
جدول 3-1 کاربردهای مختلف آئروژل‌ها را به طور مختصر نشان می‌دهد.
3-6 خلاصه
در این فصل پس از مقدمه‌ی کوتاه، اندکی در مورد سنتز آئروژل با روش سل-ژل گفته شد. پس از آن فرآیند‌های لازم برای شکل‌گیری ژل بیان شد و سپس تکنیک‌های مختلف خشک کردن و شرایط لازم برای این کار با مختصری توضیح نوشته شد. بعد مروری کوتاه به برخی از تلاش‌های انجام شده در این زمینه داشتیم و در آخر برخی از کاربردهای مختلف آئروژل‌ها را با ذکر مثال درج شد.
جدول 3-1 کاربردهای مختلف آئروژل‌ها [27].
خاصیت
ویژگی
کاربرد
رسانایی الکتریکی
بهترین جامد عایق
شفاف
مقاومت در برابر درجه حرارت بالا
سبک
ساخت و ساز ساختمآن‌ها و عایقبندی لوازم خانگی
ذخیره سازی
ماشین، وسیله نقلیه فضایی
دستگاه‌های خورشیدی
چگالی/تخلخل
سبک‌ترین جامد مصنوعی
سطح ویژه_ی بالا
کامپوزیت‌های چندگانه
کاتالیزور
حسگر
ذخیرهی سوخت
تبادل یون
فیلترهای آلاینده‌های گازی
اهداف ICF
حامل رنگ‌دانه
قالب
اپتیکی

این مطلب رو هم توصیه می کنم بخونین:   پایان نامه ارشد دربارهآبشکن، آبشستگی، جریان
دسته‌ها: No category

دیدگاهتان را بنویسید